Development of Micromachines Using Deep X-Ray Lithography

Ming X. Tan

Outline

- Background of LIGA process.
- Examples of LIGA fabricated micromachine parts.
- Material studies in LIGA:
 - -Research on the development of PMMA resists

LIGA vs. Si micro-lithography

LIGA Advantages

- •Provides unique dimensions for microdevices:
- •Fabricates devices of various materials:

Metal, alloy metal

Polymers, bio-compatible polymers

Resins with special optical properties

High temperature ceramics

•Molding process provides possibility of simple mass production.

Limits

Assembly

SSRL (Stanford)

Private Industry

ALS (LBNL)

Sandia National Labs, CA

Jet Propulsion Lab

Lawrence Berkeley National Lab

NSRL (BNL)

University of California, Berkeley (Mechanical Engineering Dep.)

LIGA Applications - Chemical Sensor Miniaturization

Mass Spectrometer (JPL/SNL), for 1-300 AMU detection.

Micro Electrochromatography (SNL), 360 μ m capillary tube in a 360 \pm 1.5 μ m hole, 2.3 mm deep.

Micro Electrochromatography

Micro-capillary tubes

LIGA Applications - Actuators

Size 5 Stepper - Stator (LBNL/SNL)
Step Size 1.8 Degree, Ni/Fe Alloy
Requires very vertical side wall and high precision

LIGA Applications -High Precision Micro Devices

Solar Grid (JPL/SNL), 16 µm wide, 1mm tall gold grids.

Lockheed Martin/SNL Heat Pipe

Material Issues in LIGA Fabrication

- LIGA mask fabrication;
- PMMA development as functions of exposure;
- PMMA attachment to metals;
- Plating in high aspect ratio deep channels, plating of different metals and alloys;
- Molding;
- Material characterization, tolerance, mechanical property measurements.

What Controls Development Rate?

Exposure Development

Unexposed PMMA

Exposed PMMA

Development Rate
PMMA Chain Length
Exposure Dose

Some Other Factors:

PMMA properties

Dev. Temp.

Exp. Condition

Pre-treatment

Approach to Produce Development Curves

Exposure Mask

Repeat same experiment w/ many samples of different exposure.

Development curve from

one exposure.

Development Curve From One Exposure 10 **Exposure** df(t) dt **Exposure** f(t) - Thickness of PMMA dissolved with time

Experimental Set-up

PMMA Dissolved Thickness vs. Time

Dissolved = f(t) = -a + blog(t)df/dt = blog(e)/t

Development Rate(f) = blog(e)/[10(f+a)/b]

Development Curves from 3 Exposures

Development curve can be obtained with single exposure.

Development Rate vs. Polymer Property

GFPMMA-cq has similar development curve as Plex-G.

LIGA Material Characterization

SNL Compression/Tensile Testing Parts $600 \ \mu m$ wide (middle), 1mm thick

SNL/UCB/LBNL Tolerance Test

Testing:
Roundness
Angularity
Concentricity
Dimensional Accuracy
Aspect Ratio

Summary

- We have made many advances in LIGA material and process development, such as PMMA development, plating, etc.
- Through collaborations with UCB, LBNL, JPL, we have successfully fabricated micromachine parts for a variety of applications.

Acknowledgment

Schondelle Wilson Michelle Bankert (SNL)

Bill Bonivert (SNL) Dale Boehme (SNL)

Jill Hruby (SNL)

Julie Lee (LBNL) Keith Jackson (LBNL)

Dean Wiberg (JPL) Reid Brennen